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Abstract
Rigorous calculations of the imaging properties of metamaterials consisting of metal-coated
semiconductor nanoparticles are presented. In particular, it is shown that under proper choice of
geometric and material parameters, arrays of such particles exhibit negative refractive index
within the region of the excitonic resonance of the semiconductor. The occurrence of negative
refractive index is predicted by the extended Maxwell–Garnett theory and confirmed by a
layer-multiple scattering method for electromagnetic waves. By using the same method it is
shown that within the negative refractive index band arrays of such nanoparticles amplify the
transferred near-field while simultaneously narrowing down its spatial profile, leading to
subwavelength resolution. The effect of material losses on the imaging properties of the arrays
is also addressed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

According to a recent definition [1], metamaterials are artificial
materials which exhibit response characteristics that are
not observed in the individual responses of its constituent
materials. The most fascinating class of metamaterials
are those exhibiting simultaneously negative permittivity
ε and permeability μ, i.e. a negative refractive index
(NRI) [2, 3]. These materials are also known as left-
handed metamaterials (LHMs) since, within their volume, the
electric-field the magnetic-field and the wavevector form a
left-handed triad. The usual approach of designing a LHM
is to combine a ‘magnetic’ sublattice (one which exhibits
negative μ) of miniaturized resistance–inductance–capacitance
(RLC) circuits, e.g. split-ring resonators, with an ‘electric’ one
(exhibiting negative ε) of thin metallic wires [4]. However,
an alternative route has been recently suggested where the
electric and magnetic sublattices are occupied by units of
less elaborate geometry such as cylinders or spheres made
from resonant materials (ionic, semiconducting or plasmonic
materials) displaying high refractive index within a specific
frequency window [5–14]. The magnetic activity of the
cylinders/spheres lies within the region of Mie resonances
resulting from the enhancement of the displacement current

inside each sphere which, in turn, gives rise to a macroscopic
magnetization of the whole structure. The electric activity is
attributed to the large polarization induced by the sphere due to
the giant dielectric permittivity around the resonance frequency
of a given dielectric function, e.g. polariton, plasmon or
exciton resonance. The above theoretical suggestions have
been recently verified experimentally for arrays of dielectric
particles of millimeter [15] and micrometer [16] size. Such
arrays can be miniaturized to the nanometer scale in the form
of nanoparticle superlattices [17].

Perhaps, the most paramount application of LHMs is using
their imaging properties; as has been pioneered by Pendry [3]
and verified experimentally, a planar slab of metamaterial with
NRI can overcome the standard diffraction limit in imaging
by focusing the far-field via negative refraction [18, 19]
and by amplifying the near-field [20–22] by surface-plasmon
excitation, a possibility which promises the realization of a
perfect lens. Near-field amplification is also feasible separately
for S-polarized waves in the magnetostatic limit using
solely RLC circuits such as split-ring resonators and Swiss
rolls [23, 24] and for P-polarized waves in the electrostatic
limit using periodic structures with metallic components such
as rods [25], wires [26], and spheres [27].
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In this work we study the imaging properties of
three-dimensional (3D) LHMs consisting of metal-coated
semiconductor spheres. As has been recently shown, arrays
of semiconductor spheres with strong excitonic oscillation
strength (CuCl, Cu2O) can exhibit negative permeability
in the visible region, around the exciton resonance [13].
In order to realize an LHM in the regime of negative
μ, the array of semiconductor spheres can be (a) either
combined with an array of metallic spheres (negative ε) in
a way that a binary LHM is created [8], or (b) by coating
the semiconductor spheres with a metallic shell [10, 28].
The above structures have been studied by employing both
effective medium treatments [6, 11, 12] and more rigorous
electromagnetic approaches [8, 10]. By exploiting the
occurrence of NRI in the case of arrays of metal-coated
semiconductor nanoparticles, we will show that near-field
amplification along with subwavelength resolution of an image
can be achieved in such structures, for both polarization modes.
We will also elucidate the role of absorption which is intrinsic
in the materials constituting the LHM under study. The paper
is organized as follows. In section 2 the basic theoretical
tools for studying the imaging properties of arrays of spherical
inclusions is presented. Section 3 applies the theory to the
case of metal-coated semiconductor spheres and section 4
concludes the paper.

2. Theory

In this work, we are dealing with finite slabs of metamaterials
consisting of a number of planes of spheres with the same two-
dimensional (2D) periodicity. In order to probe the imaging
properties of these structures, we consider the electric-field
emitted by a localized source, namely, that radiated by a small,
linear, infinitely thin, center-fed antenna. The antenna lies
along the z-axis from −d/2 � z � d/2 with current I . We
expand the electric-field radiated by the antenna as a series of
spherical waves [29]

E(r) =
∞∑

l=1

l∑

m=−l

{
aHlmh+

l (qr)Xlm(r̂)

+ aElm
i

q
∇ × [

h+
l (qr)Xlm(r̂)

]}
, (1)

Xlm(r̂) are the so-called vector spherical harmonics [29] and
h+

l are the spherical Hankel functions of order l. q = ω/c,
where c = 1/

√
μεμ0ε0 = c0/

√
με is the velocity of light in

the medium surrounding the antenna. The magnetic multipole
coefficients aHlm are zero whilst the electric ones are given
by [30]

aElm = I

πd

√
4π(2l + 1)

l(l + 1)

(
qd

2

)2

jl

(
qd

2

)
(2)

provided that l is odd and m = 0. jl in equation (2) denote
the spherical Bessel functions. Note that the above formula is
valid in the case where the antenna is much smaller than the
wavelength [30], i.e. qd � 1.

Since we wish to study the transmission of the above field
through a slab of a number of periodic planes of spheres, it is

z

x

source image

h1 h2

d

metal CuCl

Figure 1. Calculation setup.

advantageous to transform the field of equation (1) to a basis
of plane waves consistent with the 2D periodicity of the planes
of spheres. If the linear antenna is placed to the left of the slab
(see the calculation setup in figure 1), then the field radiated to
the right is incident on the slab and is written as (assuming the
center of coordinates is located at the localized source) [31]

Einc+(r) = 1

S0

∫ ∫

SBZ
d2k‖

∑

g

Einc+
g (k‖) exp(iK+

g · r) (3)

with

E inc+
g;i (k‖) =

∞∑

l=1

l∑

m=−l

∑

P=E,H

�Plm;i (K+
g )aPlm (4)

where i = 1, 2 are the two independent polarizations (polar
and azimuthal) which are normal to the wavevector [32–34]

K+
g = (k‖ + g, [q2 − (k‖ + g)2]1/2). (5)

The vectors g denote the reciprocal-lattice vectors correspond-
ing to the 2D periodic lattice of the plane of spheres and k‖
is the reduced wavevector which lies within the surface Bril-
louin zone (SBZ) associated with the reciprocal lattice [32–34].
When q2 < (k‖ + g)2, the wavevector of equation (5) defines
an evanescent wave. The coefficients ΔPlm are given by

ΔElm(K+
g ) = 2π(−i)l

q A0K +
gz

√
l(l + 1)

× {
i[α−m

l eiφ Y m−1
l (K̂+
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g )]ê1
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}
,

ΔHlm(K+
g ) = 2π(−i)l

q A0K +
gz

√
l(l + 1)

{[α−m
l cos θ eiφ Y m−1

l (K̂+
g )

− m sin θ Y m
l (K̂+

g ) + αm
l cos θ e−iφ Y m+1
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g )]ê2
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,

(6)

where θ , φ denote the angular variables (K̂+
g ) of K+

g and A0

is the area of the unit cell of the 2D lattice occupied by the
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spheres. Y m
l denotes a spherical harmonic as usual, ê1, ê2 are

the polar and azimuthal unit vectors, respectively, which are
perpendicular to K+

g . αm
l are given by αm

l = 1
2 [(l − m)(l +

m + 1)]1/2. The incident field of equation (3) will be partly
transmitted through the slab under study. The transmitted field
will be given by

Etr+(r) = 1

S0

∫ ∫

SBZ
d2k‖

∑

g

Etr+
g (k‖) exp[iK+

g ·(r−d)] (7)

with
E tr+

g;i (k‖) =
∑

g′,i ′
QI

gi;g′i ′ E inc+
g′i ′ (k‖) (8)

d is a vector joining the source to the image (see figure 1). The
transmission matrix QI appearing in equation (8) is calculated
within the framework of the layer-multiple-scattering method
which is an efficient computational method for the study
of the electromagnetic (EM) response of 3D photonic
structures consisting of non-overlapping spheres [32–34] and
axisymmetric non-spherical particles [35]. The layer-multiple-
scattering method is ideally suited for the calculation of the
transmission, reflection and absorption coefficients of an EM
wave incident on a composite slab consisting of a number
of layers which can be either planes of non-overlapping
particles with the same 2D periodicity or homogeneous plates.
For each plane of particles, the method calculates the full
multipole expansion of the total multiply scattered wave field
and deduces the corresponding transmission and reflection
matrices in the plane-wave basis. The transmission and
reflection matrices of the composite slab are evaluated from
those of the constituent layers. By imposing periodic boundary
conditions one can also obtain the (complex) frequency band
structure of an infinite periodic crystal. The method applies
equally well to non-absorbing systems and to absorbing
ones. Its chief advantage over the other existing numerical
methods lies in its efficient and reliable treatment of systems
containing strongly dispersive materials such as Drude-like and
polaritonic materials.

The calculation of the incident (equation (3)) as well
as the transmitted field (equation (7)), requires a numerical
integration over the entire SBZ. In the example examined in
the next section, the spheres in all planes occupy the sites
of a square lattice and, therefore, the SBZ is also a square.
The SBZ integration of equations (3) and (7) is performed by
subdividing progressively the SBZ into smaller and smaller
squares, within which a nine-point integration formula [36]
is very efficient. Using this formula we managed excellent
convergence with a total of 73 728 points in the SBZ. Also,
the inclusion of 13 reciprocal-lattice g-vectors along with
an angular-momentum cutoff lmax = 4 provided converged
results.

3. Results

3.1. Description of the metamaterial

We consider a 3D array of closed-packed CuCl nanoparticles
of radius S = 28 nm; CuCl exhibits a Z3 exciton line at

386.93 nm [37]. Around the exciton frequency, the dielectric
function of the above semiconductor is given by

εs(ω) = ε∞ + Aγ /(ω0 − ω − iγ ). (9)

The constant A is proportional to the exciton oscillator
strength and for CuCl, A = 632. The rest of the parameters
for CuCl are [37]: ε∞ = 5.59, h̄ω0 = 3.363 eV, and h̄γ =
5 × 10−5 eV. The small value of the loss factor γ implies a
very narrow exciton linewidth. The magnetic permeability μs

of CuCl is unity. Arrays of CuCl nanoparticles (NPs) can be
fabricated by colloidal crystallization [38] and ion implantation
techniques [39]. The CuCl NPs are coated with a metal of
nanometer thickness, 
 = 0.10S = 2.8 nm (nanoshell). Such
hybrid metal–semiconductor nanoparticles have already been
synthesized in the laboratory (for a recent review see [40]). The
dielectric function of the metal is assumed to be described by
the Drude model, i.e.

εm = 1 − ω2
p

ω(ω + iγ )
. (10)

In order to achieve NRI, ωp is taken to be ωp = 1.05ω0. For
the loss factor γ we have taken a typical value of γ /ωp =
0.01 [8]. We note that the plasma frequency ωp of the metal
can be easily tuned to the above value if one covers the
CuCl core with inhomogeneous metals such as nanoparticulate
coatings. For very thin nanoparticulate metal films below
the percolation threshold, the plasma frequency is a function
of the film thickness [41]. For silver films of thickness of
about 3 nm (the proposed thickness of our metallic nanoshell
is 2.8 nm), the measured plasma frequency is around 3.3 eV
(see figure 6 of [41]) which is very close to the desired value
(h̄ωp = 1.05h̄ω0 = 3.52 eV) of our metamaterial.

3.2. Dispersion relations and NRI

The effective permittivity εeff and permeability μeff of such
a structure can be calculated by the extended Maxwell–
Garnett (EMG) theory [42, 43] which encompasses elements
of the Mie theory within the formulas of the εeff, μeff. As
such, the EMG theory agrees very well with more rigorous
approaches [8–10, 13, 14]. Figure 2(a) shows the real and
imaginary parts of εeff, μeff, and neff for the above described
system of metal-coated CuCl nanoparticles. One clearly
observes a region of negative Re εeff for ω/ω0 < 1.0015. One
can also identify a narrow frequency region around ω/ω0 ∼
0.9998, where Re μeff < 0 which is entirely within the region
of negative Re εeff. Within this region, Re neff < 0 and an
NRI band occurs. Note that for the calculation of the neff the
imaginary parts of εeff, μeff have been also taken into account
by choosing the branch of neff = √

εeffμeff which corresponds
to the positive imaginary part (the structures under study are
made from passive materials).

It is worth noting that the selected material and geometric
parameters provide an optimized metamaterial. First of all, the
close-packed arrangement (volume filling fraction f = 0.74)
of the spheres ensures the occurrence of negative μeff which is
absent for smaller values of f . The spheres are large enough
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Figure 2. The imaginary (a) and real (b) parts of the effective
parameters neff (solid line), εeff (dashed line) and μeff (dotted line) for
a 3D array of close-packed metal-coated CuCl spheres of radius
S = 28 nm and coating thickness 
 = 2.8 nm. (c) Transmittance
(solid line), reflectance (dashed line) and absorbance (dotted line) of
light incident normally on a slab consisting of four (001) fcc planes
of the above nanospheres, as calculated by the layer-multiple
scattering method [32–34].

(S = 28 nm) to provide negative μeff but, at the same time,
they are small enough to preserve the subwavelength property
of the structure [44]. Furthermore, the plasma frequency ωp as
well as the thickness 
 of the nanoshell are properly chosen in
order to have the widest possible NRI band. For greater values
of ωp and/or 
, the overlap of the negative εeff and μeff regions
diminishes and the NRI band is eventually lost.

In order to verify the validity of the effective medium
parameters depicted in figures 2(a) and (b) we have also
employed the layer-multiple scattering (LMS) method [32–34]
(briefly outlined in section 2) in order to calculate the
transmittance of light incident normally on a finite slab of an
fcc crystal of the above nanospheres as well as the complex
frequency band structure. We have chosen the fcc lattice since
this type of lattice can satisfy a close-packed arrangement
of spheres. The slab consists of four (001) fcc planes of
nanospheres and the respective transmittance is shown in
figure 2(c). It is evident that within the NRI band of figure 2(b),
the transmittance shows a maximum which is what one expects
from a slab of NRI [19]. As light propagates through the
slab, it is also attenuated due to the intrinsic losses of the
constituent materials (CuCl and Drude-metal) as is evident
from the corresponding maximum of the absorbance curve of
figure 2(c) within the NRI band. It is also evident that there
is a wider transmittance peak from ω/ω0 	 1.0015 to 1.002
which, however, corresponds to a region of refractive index
with positive real part (the matching of these two frequency
regions is not perfect since figure 2(a) is based on an effective
medium approximation whilst figure 2(b) is from an exact
theory). In between these peaks as well as above the second
peak, the transmittance is suppressed as only one of Re εeff and
Re μeff becomes negative, giving rise to a practically imaginary
refractive index (see figures 2(a) and (b)).

We further compare the EMG results with the rigorous
LMS method, in figure 3. The black lines in figures 3(a)

Figure 3. (a) and (b) The black lines depict the complex frequency
band structure normal to the (001) surface of an fcc crystal of
close-packed metal-coated CuCl spheres (S = 28 nm, 
 = 2.8 nm) in
air, as calculated by the rigorous LMS method. The gray lines show
the dispersion curves of the above crystal as obtained from the EMG
theory. (c) Real and (d) imaginary parts of the effective refractive
index as obtained from the LMS method (black lines) and EMG
theory (gray lines). The dashed lines correspond to the impedance
ηeff obtained from the EMG theory.

and (b) depict the complex frequency band structure normal
to the (001) surface of fcc, around the NRI band, as obtained
from the LMS method. We note that due to the presence of
losses in the metamaterial under study, we depict the frequency
band which corresponds to the smallest Im kz since the latter
determines the rate of attenuation of an incident wave within
the metamaterial slab. The LMS complex frequency band
structure is compared against the EMG dispersion relation
k = (ω/c)

√
εeff(ω)μeff(ω) where εeff and μeff are those of

figures 2(a) and (b). Figures 3(c) and (d) show the refractive
index as deduced from the LMS complex frequency band
structure and the corresponding EMG refractive index. From
all these curves it is evident that there is an overall good
agreement between the effective medium theory and the first-
principles treatment. There is only some significant difference
in the dip value of the refractive index. Figures 3(c) and (d)
also show the real and imaginary parts of the impedance ηeff

as calculated by the EMG theory. A similar quantity cannot
be obtained from the LMS frequency band structure since one
cannot separately determine εeff and μeff.

3.3. Imaging properties

According to the effective medium theory for a lossless
metamaterial lens [3], perfect imaging is achieved when the
refractive index of the metamaterial slab is minus unity (if the
slab is surrounded by air) and the corresponding impedance is
equal to plus unity. But, even when there is complete index
and impedance mismatch between a NRI material and air,
paraxial beams will still focus to a point [45]. In this latter
case, however, the image is distorted as the inhomogeneous
components are not perfectly transferred [45]. In our case, the
metamaterial under study is lossy and, therefore, the imaging
conditions of [45] are never met, resulting in a distorted final
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Figure 4. Distribution of |Ex |2 (a), |Ey |2 (b), and |Ez |2 (c)
(in arbitrary units) along the line y = 0 in the plane lying at a
distance h2 = 0.6c/ω0 from the plane of spheres (see figure 1), for
frequency ω/ω0 = 0.999 84. The solid lines refer to the field
distribution from a localized source (antenna) placed at a distance
h1 = 0.6c/ω0 from the center of a single plane of close-packed
metal-coated CuCl nanospheres (see figure 1). The dashed lines refer
to the free-space case (no spheres present).

image. However, subwavelength imaging (though not perfect)
can still be feasible provided that the NRI slab is much smaller
than the working wavelength [46].

Therefore, in order to probe the subwavelength imaging
properties of the metamaterial under study, we have applied
the formalism developed in section 2 for the case of a single
plane of metal-coated CuCl nanospheres. As a localized source
of light we have considered a linear, infinitely thin, center-
fed antenna of width d = 0.001c/ω0, lying along the z-
axis. It is placed at a distance h1 = 0.6c/ω0 from the center
of a single plane of spheres (see figure 1). This particular
choice of light source is justified by the fact that the proposed
optical LHM can be easily realized in the infrared or even
in the microwave regime, e.g. by using phonon–polaritonic
resonances (instead of excitonic ones) in order to provide
negative μeff and consequently NRI [8, 44]. In these regimes,
the type of antenna described above is a realistic choice of
radiation source.

Figure 4 shows the distribution of all three electric-
field components along the line y = 0 in a plane lying at
a distance h2 = 0.6c/ω0 from the plane of spheres (see
figure 1), for frequency ω/ω0 = 0.999 84 corresponding to
the low-frequency maximum of the transmittance curve of
figure 2(c). Since we cannot retrieve εeff, μeff and hence the
impedance directly from the complex frequency band structure
of figure 3 (LMS method), we have chosen this particular
frequency (corresponding to maximum transmittance within
the NRI band) in order to maximize, at least, the transfer of the
propagating components. For comparison, we also show the
corresponding curves in the absence of the plane of spheres.
We note that the field distributions of all figures that follow
contain both the far-field (q2 > (k‖ + g)2 in equation (5))
and near-field (q2 < (k‖ + g)2 in equation (5)) components.
Since the chosen frequency (ω/ω0 = 0.999 84) lies within the
NRI band of the array of spheres (see above), we expect that

Figure 5. Same as in figure 3 but for frequency ω/ω0 = 1.001 68.

the near-field components which are transmitted through the
plane will be amplified. And this is indeed what we observe in
figure 4. We observe that all three components of the electric-
field are amplified with respect to the case where the plane
of spheres is absent. This can occur only in the case of NRI
where, as predicted by Pendry [3], both polarization modes
are amplified when transmitted through a planar NRI slab. We
remember that when only one of εeff < 0 or μeff < 0 occurs,
the near-field amplification affects one of the polarization
modes [23–27]. In addition to the near-field amplification
of the electric-field, we observe that the full width at half
minimum (FWHM) for the Ex - (∼λ0/7) and Ey- components
(∼λ0/3) is considerably smaller than the free-space case,
suggesting a subwavelength imaging operation of the structure
(see below). The Ez-component (figure 4(c)) is much more
amplified than the other two; however, the field distribution
looks much more complicated, possibly, due to interference
effects (the far-field is also included in the calculation) and
the peculiarity of the source (the Ez-component emitted by a
center-fed antenna possesses a nodal line along the direction of
the antenna axis).

In order to confirm the fact that the near-field amplification
shown in figure 4 is attributed to the occurrence of NRI, in
figure 5 we show the same quantities, for the same calculation
setup as in figure 4, but for frequency ω/ω0 = 1.001 68
corresponding to the high-frequency transmission peak of
figure 2(c), which lies out of the NRI band. We observe
that only the Ez-component (figure 5(c)) shows a similar
trend to that of figure 4(c). The Ey-component is suppressed
compared to the free-space case whilst the Ex -component
is barely amplified from the plane of nanospheres. Also,
the subwavelength profile of the field distributions is lost as
the maxima are almost as wide as those of the free-space
case. So, judging from figure 5, we can infer that the field
amplification for all polarizations and the subwavelength width
of the electric-field of figure 4 are in accordance with the
occurrence of NRI.

Figure 6 shows the image of the center-fed antenna for
different values of the refractive index as obtained by the LMS
method (figures 3(c) and (d)). The value n = −0.38 + i0.4
corresponds to the case of figure 4 (frequency of maximum
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Figure 6. Distribution of |Ex |2 (in arbitrary units) along the line
y = 0 and at distance h2 = 0.6c/ω0 from a single plane of spheres
(see figure 1), for different values of the refractive index (see legend)
as obtained by the LMS method. The source (antenna) is placed at a
distance h1 = 0.6c/ω0 from the plane of spheres.

transmittance within the NRI band). The other two curves
correspond to the real part of n, Re n = −1. We observe
that for n = −1 + i3.3 the amplification is smaller than
for n = −1 + i0.41 due to the much higher value of Im n.
However, the peak value of the field for n = −1 + i3.3 is
not much smaller than that of n = −1 + i0.41 since the
critical wavevector above which the image transfer function
diminishes is linearly proportional to the logarithm of the
imaginary part of the refractive index [46].

We note that the formulas for the position of the focal point
as given in [45] cannot be met by our lossy LHM metamaterial.
Therefore, we proceed numerically to locate the position of the
image plane. Figure 7 shows the transmitted field intensity
for different distances h2 from the plane of spheres. It is
evident that the maximum of the central peak occurs for h2 =
0.48c/ω0, i.e. the image plane is the plane which is tangential
to the spheres. This would imply that the propagating beams
cannot be focused to a point due to the high amount of losses
in the LHM slab.

Next, in figure 8, we probe the imaging properties of
thicker slabs, i.e. slabs containing more than one plane of
nanospheres. We have chosen to depict the Ex -component but
similar effects are observed for the other two components. For
the case of two planes of nanospheres (figure 8(a)), the field
amplification is still evident although somewhat distorted at
the center. There are also two satellite peaks evident which
may influence a potential imaging operation of the structure.
For a three-plane-thick slab (figure 8(b)) the amplification of
the transmitted field is not as dramatic as for thinner slabs
(figures 4(a) and 8(a)) whilst for the four-plane-thick slab the
amplification is evidently lost. At first glance, this seems
to be an unexpected result: the extended Maxwell–Garnett
theory [42, 43] which was employed for the calculation of neff

in figures 2(a) and (b) refers to 3D collections of scatterers and
it is supposed to be more applicable to thick enough slabs.
However, as both constituent materials of the nanospheres
(metal and semiconductor) suffer from losses (especially the

Figure 7. Distribution of |Ex |2 (in arbitrary units) for frequency
ω/ω0 = 0.999 84, along the line y = 0 and for various distances h2

(see legend) from the plane of spheres. The source (antenna) is
placed at distance h1 = 0.6c/ω0 from the plane of spheres.

Figure 8. Solid lines: distribution of |Ex |2 (in arbitrary units) along
the line y = 0 in the plane lying at a distance h2 = 0.6c/ω0 from the
plane of spheres (see figure 1), for frequency ω/ω0 = 0.999 84, in
the presence of a slab consisting of two (a), three (b) and four (c)
planes of close-packed metal-coated CuCl nanospheres. The distance
of the source from the center of the left plane of the slab is
h = 0.6c/ω0. The dashed lines refer to the free-space case (no
spheres present).

metal) we expect that thicker slabs mean longer optical paths
for the transmitted field, and, therefore, higher losses which
counterbalance the near-field amplification effect. This is also
manifested in figure 2(c) where almost 90% of the incident
power is absorbed within the slab (of four planes of spheres).
Similar effects have also been measured experimentally for
LHMs in the microwave regime [22]. The results of figure 8
are in agreement with previous suggestions [46], namely that
in order to accomplish near-field amplification in a lossy LHM,
the slab thickness must be much smaller than the wavelength.
This is why the most efficient amplification occurs for a single
plane of spheres where the thickness is D = 2S ∼= λ/6.5.
For comparison, the thickness for the slab of four planes is
D ∼= λ/1.6.

Finally, in order to study the image-resolution properties
of the array of nanospheres, in figure 9, we have considered
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Figure 9. Field distribution for two sources separated by distance
c/ω0 = λ0/π and arranged symmetrically with respect to the center
of a sphere of a single plane of close-packed metal-coated CuCl
nanospheres (solid lines). The sources are placed at a distance
h1 = 0.6c/ω0 from the center of a single sphere of the plane. The
dashed lines refer to the free-space case (no spheres present).

the case of two localized sources (small center-fed antennas)
separated by a vertical subwavelength distance of c/ω0 =
λ0/π . The array consists of a single plane of nanospheres since
absorption is expected to make the image resolution deteriorate
for thicker slabs. The sources are placed symmetrically
with respect to the center of a sphere, at a distance h1 =
0.6c/ω0 from the plane. As is evident from the dashed
curve of figure 9, the distance between the sources is too
small to be resolved in free-space (a single peak appears).
However, in the presence of the plane of nanospheres, the
occurrence of NRI is accompanied by a dramatic increase in
the image resolution, which allows for distinguishing the two
sources in space by use of visible light. We note that the
image resolution can be further improved by using smaller
nanospheres, down to a radius of 15 nm. However, for CuCl
spheres smaller than that, μeff is no longer negative [44]
around the exciton resonance and a NRI band is not expected
to occur.

4. Conclusion

It has been shown that arrays of metal-coated semiconductor
nanospheres can exhibit NRI around the exciton resonance
(if such exists) of the semiconductor. The existence of
NRI has been studied by use of the extended Maxwell–
Garnett theory and confirmed by rigorous EM calculations
of light transmittance. Within the NRI band, an array of
such spheres can amplify the near-field for both polarization
modes, in accordance with Pendry’s theory [3]. The near-
field amplification is accompanied by subwavelength image
resolution that is only limited by the inherent losses of the
metal and the semiconductor. The systems studied in this
work are strong candidates for LHMs in the optical regime
due to their fabrication with existing methods of colloidal
chemistry [38–40, 47].
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